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ABSRACT

Bathymetry measurements are important for many activities such as coastal engineering
applications and hydrographical surveys. Remote sensing images provided wide
coverage, low cost and time-effectiveness for bathymetry measurements. In this study
data from Sentinel 2 satellite images were used to evaluate three models for bathymetry
calculations in the south of MarsaAlam center - Red Sea Governorate on Halaib and
Shalatin road. The models are neural network fitting algorithms (NN), support vector
regression algorithms (SVR), and bagging fitting ensemble (BAG). The models used to
get the depth maps in shallow coastal areas from high resolution satellite imagery using
reflection of blue / red, green / red ratios, green and red bands. The BAG resulted in
RMSE 0.65564m, R2 of 0.99, the SVR yielded RMSE of 2.0474m, R2 of 0.91 and NN
yielded RMSE of 1.3430m and R2 of 0.96 over study area. The BAG producing the
most accurate results for bathymetry calculation.

KEWORDS: Neural network, Bagging, Bathymetry, Sentinel 2, Support vector
regression.

1. INTRODUCTION

Bathymetric information for shallow coastal areas is important for hydrological
engineering applications as sedimentary processes, coastal studies, the purposes of
monitoring underwater topography and movement of deposited sediments, and for
making nautical charts in support of navigation [3]. For mapping underwater features it
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is important to update the water depths information as rocks, sandy areas, sediments
accumulation and coral reefs.

The conventional methods for detecting bathymetry are single multibeam echosounders
or airborne LIiDAR. Multibeam echosounders are considered the most accurate method,
able to measure bathymetry at up to 8 cm vertical accuracy in 200 m water depth. Some
equipment can detect the seabed in the depths of the water of up to 500 m with adequate
vertical resolution. In contrast, Airborne LIDAR is suitable for shallow areas and can
achieve vertical accuracy of up to 20 cm in water depth up to 30 meters [11,32]. But,
these methods are limited by their spatial coverage, high costs, and its long time.

Estimating depth measurement using satellite imagery began in 1970 using Landsat
satellite imagery [13].After high resolution satellites were launched and is used to detect
water depth, for example IKONOS [29], QUICKBIRD [5] and SPOT-4 [13]. In these
previous studies, the maximum water depth at which the seafloor could be detected was
30 meters under certain conditions. In addition, the average error was about 10 cm and
30% based on water visibility, bottom type, and weather conditions [20].

Some of depth-algorithms have been developed according to the relationship between
image reflection values and water depth. The first algorithm was developed by Lyzenga
(1978) based on this linear relationship. This method removes the effect of the water
surface and atmosphere from images, as the result the reflected values refers to the
depth of the water. Limitations of this method include the assumptions that the water
floor is homogeneous and that water visibility is essentially the same across the imaging
area [24]. Lyzenga (1985) tried to overcome these limitations using a combination of
multiple image ranges based on the multiple linear regression model of the record.
Stumpf et al. (2003) improved the algorithm using the ratio between bands and
correlated these values with known water depths. Indeed, the last method has no
physical foundation and needs special parameters that should defined by the user [34].

Neurel Network(NNs) represent an alternative algorithm suitable for depth detection.
[25] began using NNs for bathymetric detection because they overcome drawbacks of
conventional approaches and, in fact, possess many advantages. For example, field data
requirements are reduced and NNs use raw reflection values regardless of the bottom
type or water column factors. Finally, they are more practical and faster than traditional
methods. NNs were also applied in other studies using various satellite images. For
example, Sheela used Images of IRS P6-LISS Il and Linda et al. (2011) used Quick
Bird images. The limitation of their use of neural networks to detect bathymetry was
that they used all image ranges as inputs to the NNs algorithm. In addition, sun
luminosity and certain weather conditions may affect the estimation of water depths.
This study proposed various empirical approaches for bathymetry detection in shallow
coastal areas to develop an assessment and monitoring computerized system that uses
the satellite images to detect bathymetry over coastal water bodies. These approaches
are (NN), (SVR) and the (BAG). The proposed methodologies for detect bathymetry
were applied using Sentinel 2 satellite images. The achieved results were then compared
and evaluated with echosounder bathymetric data over the study areas.

2. Study areas and available data

The study area is located in the resort of Newhaven south of Marsa Alam center - Red
Sea Governorate on Halaib and Shalatin road, bounded on the south by the Fantasia
resort and from the West land space then Halaib road and Shalatin and from the north
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by land of space then Lambrada Gamma Resort (figure 1).Newhaven Resort has a sea
front on the Red Sea with a coastline of 530 meters.

The resort is characterized by a shallow area ranging from the length of the shoreline
from 100 meters to 200 meters, with different benthic topography and different marine
environments of marine grass and coral reefs, with the top of the reef crest (figure 2)
and then the slope to deep water.
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Figure 1: The study area.

Figure 2: Section of reef crest.
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2.1 Imagery data

In this research the Sentinel 2 open data satellite missions, were used. The closest time
scenes at July 2018 were selected. The data of this satellite missions can be obtained
from USGS Earth Explorer and Copernicus Open Access Hub.

2.2 Echosounder data

The deviceBathy-500mf Multi Frequency- Survey-Echo Sounder was used on the boat
to scan the longitudinal and transverse sectors of the deep area, which allows the
passage of vessels without any hindrance, and the device is connected to the GPS device
to determine the coordinates of each point in the sector surveyed with high accuracy.
Laptop on the program of the marine hypack survey, which allows the scanner sector
vision and tracking the current survey on the computer screen to ensure the direction
and accuracy of scanned sectors, as well as storage and output data In order to perform
the survey with the accuracy the device was set to record readings every five seconds on
Godly compound identified previously were recorded nearly 5,500 points in the deep
area. The shallow area extends to about 150 meters from the shore and is difficult to
reach by boat. The depth of the water is from 0 to 60 centimeter and about 5 meters to
the lagoon. This is done by manual scanning device and manual GPS. The coordinates
and depth of each point is recorded direct until walking in shallow water and the total
points in the shallow water are about 1500 points.
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Figure 3: In-situ bathymetry.
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3. Methodology

In this study, the images were acquired from Sentinel 2 satellite according to Metadata
documentation; all images do not need geometric corrections. They are already in the
World Geodetic System (WGS84) datum and the Universal Transverse Mercator
(UTM) projection system. The Sentinel 2 multispectral images of the studied area were
corrected for bathymetric mapping through three successive steps [21]. First, we
converted the digital numbers of image pixels to reflectance values. Second, the image
corrected for atmospheric errors. Then, the image corrected from sun glint errors. The
resulting image can be linked to water depths using field calibration points. The used
methodology is described as follow:

3.1 Imagery data pre-processing

The reflectance of each pixel value can de calculated using the parameters in the
metadata file depended on the following equation.

ph=(Mp DN + Ap)/sin Ose Equation 1

Where, pA denotes reflectance of the top of atmosphere reflectance, DN represents the
digital numbers recorded by the sensor, Mp is the band-specific multiplicative rescaling
factor for reflectance, Ap is the band specific additive rescaling factor for reflectance,
and Ose is the local sun elevation angle in degrees. The Mp, Ap, and Ose values were
obtained from the metadata file of image (MTL file).

We corrected the reflectance values for atmospheric effects using dark pixel subtraction
theory. In this method no atmospheric parameters are needed and it is based on the
hypothesis that the pixel with the darkest value has no reflection and the remaining
value of this pixel came from the atmospheric effect. As a result, the atmospheric
correction calculated by subtracting all pixels from this pixel using the following
equation 2:

Rac = Ri— Rdp Equation 2

Where Rac represents the corrected pixel reflectance value, Ri is the initial pixel
reflectance value (pA), and Rdp denotes the darkest pixel value.

We corrected the reflectance values for sun glint errors using the relation between the
near-infrared band and other bands [9] based on the following equation:

Ri' = Ri * bi (RNIR — MinNIR) Equation 3

where Ri' denotes the de-glinted pixel reflectance value, Ri represents the initial pixel
reflectance value, bi is the regression line slope resulting from the correlation between a
sample of a visible band reflectance values and NIR band reflectance values over the
glinting area, RNIR denotes the corresponding pixel value in NIR band, and MinNIR
represents the minimum NIR value in the same sample of the glinting area.

4. Proposed approaches for bathymetry estimation

4.1 Neural network fitting algorithms (NN)

Neural network (NN) have been used widely in remote sensing for classification and
regression problems [23]. The multilayer perception model using the back propagation
algorithm is a supervised approach used for displaying the non-linear relationship
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between input and output data [30]. The multilayer perception consists of: the input
layers as neurons that represent the available data, which in this case is the multispectral
image band values; the hidden layer that demonstrates the network training process; and
finally the output layer, which are the water depths. The back propagation algorithm
begins with initial network weights to find the least error values by comparing actual
outputs with desired values through an iterative process eventually reaching a
predefined level of accuracy [29]. Also, the linear function from the hidden layer to
node outputs [3]. The Levenberg—Marquard training algorithm is used to train the back
propagation for weight and bias values updating as it is the first-choice supervised
algorithm that is highly recommended for training middle-sized feed-forward neural
networks [28]. The algorithm is given in Equation 4 [8]:

X[4q =X+ [JTI+ pI] - 1JT ek Equation 4

where X[ = the vector of current weights and biases, ¢ = the vector matrix of the
network errors, J=Jacobean matrix of the network errors, p = a scalar indicating the
calculation speed of the Jacobean matrix, k = iteration number, | = the unit matrix, and
T = the transpose matrix.

4.2 Support Vector Regression (SVR) [22]

Vapnik et al. (1964) proposed support vector machines (SVMs) for solving
classification problems and statistical learning applications. As the method has shown
high performance and has resulted in high accuracies, it has been extended successfully
to regression problems. The support vector regression finds the most possible flat and
deviated insensitive loss of function € from the real targets [37]. In other words, errors
are allowed if it is less than the predefined ¢ that controls the tolerance; otherwise, they
are not. Suppose that we have a linear problem with the following equation:

F(X)=%w*y+b Equation 5

where w 3 y and b 3 y, both w and y are the dot product of w and y, and b is the bias.
Flatness in regression problems means searching for a small value for w, or in other
words, minimizing the norm Euclidian space Iwl?. Thus, the regression can be stated as
a convex optimisation problem as follows :
Minimize 1lwl?

Subject to

{ti— w.y)+b< e

w.y)—ti+b<ce Equation 6

However, this formula assumes that all points are approximated within the allowable
precision g€, which is not a feasible assumption in all cases, and some exceeding errors
need to be allowed. A soft margin loss function is used to present slack variables (i to
overcome this problem, and the support vector regression solves this problem as
follows: Minimize

SIwl2+ C Y™ (Ci + {i*)
Subject to

ti—-(wy)+b< T
(w.y) —ti+b < ix Equation 7
Gi, G
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Where C is the compromise between the flatness and the tolerated deviation larger than
€. The points outside € are called support vectors.

It was found that solving this optimization problem is easier in its dual formulation and
by extending the SVM to nonlinear functions. As a result, a standard idealisation
method using Lagrange multipliers can be applied to solve the SVR optimization
problem. A Lagrange function can be obtained from the objective function by defining a
dual set of variables. The dual optimisation problem written as [9]:

Maximize

Yo X jor (al = @) (@ — @) (¥i =)
e Y (ai— al®) + YL, xi (ai — al®)

Subject to
{ZLl(ai — al¥) =0
(ai,ai)e[0,C] Equation 8

where ai and ai* are Lagrange multipliers.
As a result, w and the expansion of F(x) can be calculated as follows:

W= Y (ai — al®)xiand F(x)
= Yij=1(ai — aj)(yi —yj) + b(9)

The equations conclude that w can be calculated from a linear combination of the
training sets of yi.

The bias term b is calculated using the Karush Kuhn Tucker (KKT) conditions [12] as
follows:

b =xi — (w,y) - ¢ for ai (0,C) Equation 10

The non-linearity of the support vector algorithm can be performed by pre-processing
the training sets yiwith a map ®: y — into some feature space.

For a practical solution, k kernel (y, y ') can be used, and the support vector regression
algorithm can be rewritten as follows [9]:
Maximize

{%5ﬁﬁm—wmw—Wﬂuw—w>
e Yl (ai+ al) + Y xi (ai — al)

Subject to
L(ai— al®) =0
(ai,ai*)e[0,C] Equation 11

Also, w and the expression of F(x) can be rewritten as :

W= Y (ai — al®) dxi and F(x)
=Y (ai — afk(yi,yj) +b Equation 12

Next, we need the k kernel function (y, y ") that corresponds to a point product in some
feature space. In other words, one converts the nonlinear input space into a high
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dimensional feature space. There are several kernels that can be used to perform this
transformation, such as Pearson universal kernel which proposed by [36], who argued
its force, the leading time-saving power leading to better circulating performance than
SVRs. The global Pearson kernel can be written as follows:

K(yi,yj)r 1+L Zm ﬂ Equation 13

Where ¢ and o are kernel parameters which control the half width and the tailing factor
of the peak.

[26] used the sequential minimum optimisation (SMO) algorithm for solving the
optimisation problem in SVR and debated its precedence to other optimisation
solutions. The SMO s an iterative algorithm solving the optimisation problem
analytically by breaking the optimisation problem into smaller problems. The
constraints for the Lagrange multipliers are reduced as follows:

Ozaiar=Candyiai +yjor* =k

The algorithm starts by finding the Lagrange parameter ai that violates the KKT
conditions [12] then chooses the second Lagrange parameter ai, optimizes both, and
repeats these steps until convergence. When all Lagrange complications meet the
conditions within the previously allowed tolerance, the problem is solved.

4.3 Bagging fitting ensemble (BAG) [21]

Breiman suggested Bag as an ensemble learning algorithm to improve prediction model
performance, regression, and classification accuracy. His goal was to overcome
overfitting problems and reduce algorithm variance. The objective of bagging theory is
to make independent samples with replacements from the training set, and then generate
a fitting model to each bootstrap sample. Finally, all generated models are aggregated
by averaging in regression problems [35]. This process can be useful for improving the
results of unstable algorithms as regression trees and NNs. The results are always more
favourable than when using a single model [10]. The Gini diversity index can be used to
split each node to assign a criterion for impurity. Splitting is finished when the Gini
index reaches zero and the results are pure split nodes [25].

5. RESULTS

Figure 4 summarises the processing steps for estimating bathymetric information from
Sentinel 2 satellite imagery. The first two steps involve converting the DNs to
reflectance values and correcting both atmospheric and sun glint errors. These steps are
performed in an ENVI environment. The proposed approaches for estimating
bathymetry and all the statistical analysis are conducted in a MATLAB environment.
For all proposed approaches corrected blue/red, green/red green and red bands
logarithms were used as the input layer and water depths as the output layer. The data
set was divided into random samples with 75% for training and 25% for testing.

The NN has been trained using Levenberg-Marquardt back-propagation training
function with. The log sigmoid function was used with the hidden layer, 10 neurons
were selected after many trials to get the optimum number of neurons, and the linear
function with the output layer.
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The SVR was applied with SMO for solving the optimisation problem and the PUK
kernel function. The SVR code was originally developed [4].

The BAG model was constructed with ensembles of 30 regression trees .All of these
parameters for each algorithm were selected based on the minimum RMSE and highest

R2 values.
Figures 5, 6, and 7 show the evaluation of each model, and Table 1 summarize the

corresponding RMSE and R2 values.
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Figure 4: The workflow of the bathymetry detection steps of the study area.
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Figure 7: The continuous fitted model using BAG
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Table 1: The RMSEs and R2 of all methods for bathymetry detection

Methodology NN SVR BAG
RMSE (m) 1.3430 2.0474 0.65564
R? 0.96 091 0.99

4. DISCUSSION

For bathymetry the selected bands was performed through a statistical analysis to
investigate the correlation between water depth and the imagery bands. The red and
green bands showed a strong relationship with the depth of the water [5,34], and as the
same blue/red and green/red logarithms band ratios showed a strong relationship with
the depth of the water. Finding the best combination of the selected bands is performed
through a trial process based on the lowest value of RMSE and the highest value of R2.
At this study, the best combination occurred between the blue/red, green/red, green and
red bands logarithms.

The NN performs the correlation between the multilayer of the imagery bands as input
and water depth as output through multidimensional non-linear functions. Many
researchers have confirmed the outperformance of NN compared to various empirical
methods as it finds the highest correlation between the imagery data and the in situ
water depth [7]. The main disadvantage of NN is the many experiments needed to find
the best weights for the relationship as it is an unstable method that has significant
differences in RMSE and R? from one experiment to another.

The SVR algorithm is as table approach that uses minimum sequential optimisation to
correlate the imagery bands with water depth. The optimum kernel function was used,
after many trials, from the radial basis function kernel, the polynomial kernel, and the
Pearson universal kernel depended on minimum RMSE and maximum R2. The latter
overtook other kernel functions with the highest R2 and lowest RMSE. Also, the
optimum SVR parameters were selected based on the minimum RMSE criterion.

The BAG ensemble averages regression trees built from a bootstrapped random
selection from input data. The optimum number of regression trees was selected after
sequential trials of various numbers of trees, and the best values were achieved with 30
trees. The algorithms use the Gini diversity index for the splitting trees that are not
pruned. The randomness of the regression trees and the splitting of the data into training
and testing sets argue that the ensemble was not over fitting the input data.

BAG algorithm shows higher accuracies and more stability than do SVR and NN over
the study area.

7. CONCLUSION
In this study three approaches were used for bathymetry detection. The proposed
approaches used blue/red, and green/red, green and red bands logarithms corrected from
atmospheric and sunglint systematic bands of Sentinel 2 satellite images as input data
and water depth as output. To validate the proposed approaches, the approaches were
compared with each other. All results were also compared with echosounder water
depth data.
The proposed approaches NN, SVR and BAG, produced RMSE values of 1.3430,
2.0474 and 0.65564 m and R? values of 0.96, 0.91, 0.99 respectively.

It can be concluded that BAG approach achieved more accurate results than NN and
SVR for bathymetry detection over the study area using Sentinel 2 satellite images.
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