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 لبحث :املخص 
ن موفعالية  لتكلفةاقدمت صور الأقمار الصناعية متعددة الأطياف بتقنية  الأستشعار عن بعد تغطية واسعة وقلة في  

ثل مية الضحلة في عدد من التطبيقات المهمة للمناطق الساحل هاالأعماق. يتم استخدام بيانات حيث الوقت لقياس

قيّم هذه تلية. رورية لتطبيقات الهندسة الهيدرولوجية والدراسات الساحالمعلومات عن أعماق المياة التي تعد ض

حمر ر الأمحافظة البح -الدراسة أداء ثلاثة نماذج تجريبية لحسابات قياس الأعماق في جنوب مركز مرسى علم 

ر نحداا( ، ودعم خوارزمية NNعلى طريق حلايب وشلاتين. النماذج هي خوارزميات تركيب الشبكة العصبية )

دام صور (. تم تطبيقها بإستخBAG( ، وخوارزمية تركيب شجرة الانحدار باستخدام التعبئة )SVRالمتجهات )

كاس النطاق لعمل خرائط الأعماق في المناطق الساحلية الضحلة  باستخدام انع 2الأقمار الصناعية سينتينال 

 ترالأحمر. أسف نسبة بين النطاقين الأخضر /الأخضر ، الأحمر ، و النسبة بين النطاقين الأزرق / الأحمر و وال

بقيمة ²Rو مربع معامل الارتباط م0.65564بقيمة   RMSE( عن جذر متوسط مربع الخطأ BAGخوارزمية)

وأسفرت خوارزميات  0.91بقيمة R²م و  2.0474بقيمة RMSE( عن SVR، كما أسفرت خوارزمية)0.99

(NN)   عنRMSE  و م  1.3430بقيمةR² 0.96بقيمة( أنتجت خوارزمية .BAG أكثر النتائج دقة ب )RMSE 

 .نطقة الدراسةم، مما أثبت أنها الخوارزمية المفضلة لحساب قياس الأعماق في 0.99بقيمة 2Rم و  0.65564بقيمة 

تعبئة، ام الالكلمات المفتاحية: خوارزميات تركيب الشبكة العصبية، وخوارزمية تركيب شجرة الانحدار باستخد

 ، ودعم خوارزمية انحدار المتجهات.2سينتينال  الأعماق،

 

ABSRACT 
Bathymetry measurements are important for many activities such as coastal engineering 

applications and hydrographical surveys. Remote sensing images provided wide 

coverage, low cost and time-effectiveness for bathymetry measurements. In this study 

data from Sentinel 2 satellite images were used to evaluate three models for bathymetry 

calculations in the south of MarsaAlam center - Red Sea Governorate on Halaib and 

Shalatin road. The models are neural network fitting algorithms (NN), support vector 

regression algorithms (SVR), and bagging fitting ensemble (BAG). The models used to 

get the depth maps in shallow coastal areas from high resolution satellite imagery using 

reflection of blue / red, green / red ratios, green and red bands. The BAG resulted in 

RMSE 0.65564m, R² of 0.99, the SVR yielded RMSE of 2.0474m, R² of 0.91 and NN 

yielded RMSE of 1.3430m and R² of 0.96 over study area. The BAG producing the 

most accurate results for bathymetry calculation. 

KEWORDS: Neural network, Bagging, Bathymetry, Sentinel 2, Support vector 

regression. 
 

1. INTRODUCTION 
Bathymetric information for shallow coastal areas is important for hydrological 

engineering applications as sedimentary processes, coastal studies, the purposes of 

monitoring underwater topography and movement of deposited sediments, and for 

making nautical charts in support of navigation [3]. For mapping underwater features it 
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is important to update the water depths information as rocks, sandy areas, sediments 

accumulation and coral reefs. 

The conventional methods for detecting bathymetry are single multibeam echosounders 

or airborne LiDAR. Multibeam echosounders are considered the most accurate method, 

able to measure bathymetry at up to 8 cm vertical accuracy in 200 m water depth. Some 

equipment can detect the seabed in the depths of the water of up to 500 m with adequate 

vertical resolution. In contrast, Airborne LiDAR is suitable for shallow areas and can 

achieve vertical accuracy of up to 20 cm in water depth up to 30 meters [11,32]. But, 

these methods are limited by their spatial coverage, high costs, and its long time. 

 Estimating depth measurement using satellite imagery began in 1970 using Landsat 

satellite imagery [13].After high resolution satellites were launched and is used to detect 

water depth, for example IKONOS [29], QUICKBIRD [5] and SPOT-4 [13]. In these 

previous studies, the maximum water depth at which the seafloor could be detected was 

30 meters under certain conditions. In addition, the average error was about 10 cm and 

30% based on water visibility, bottom type, and weather conditions [20]. 

Some of depth-algorithms have been developed according to the relationship between 

image reflection values and water depth. The first algorithm was developed by Lyzenga 

(1978) based on this linear relationship. This method removes the effect of the water 

surface and atmosphere from images, as the result the reflected values  refers to the 

depth of the water. Limitations of this method include the assumptions that the water 

floor is homogeneous and that water visibility is essentially the same across the imaging 

area [24]. Lyzenga (1985) tried to overcome these limitations using a combination of 

multiple image ranges based on the multiple linear regression model of the record. 

Stumpf et al. (2003) improved the algorithm using the ratio between bands and 

correlated these values with known water depths. Indeed, the last method has no 

physical foundation and needs special parameters that should defined by the user [34]. 

Neurel Network(NNs) represent an alternative algorithm suitable for depth detection. 

[25] began using NNs for bathymetric detection because they overcome drawbacks of 

conventional approaches and, in fact, possess many advantages. For example, field data 

requirements are reduced and NNs use raw reflection values regardless of the bottom 

type or water column factors. Finally, they are more practical and faster than traditional 

methods. NNs were also applied in other studies using various satellite images. For 

example, Sheela used Images of IRS P6-LISS III and Linda et al. (2011) used Quick 

Bird images. The limitation of their use of neural networks to detect bathymetry was 

that they used all image ranges as inputs to the NNs algorithm. In addition, sun 

luminosity and certain weather conditions may affect the estimation of water depths. 

This study proposed various empirical approaches for bathymetry detection in shallow 

coastal areas to develop an assessment and monitoring computerized system that uses 

the satellite images to detect bathymetry over coastal water bodies. These approaches 

are (NN), (SVR) and the (BAG). The proposed methodologies for detect bathymetry 

were applied using Sentinel 2 satellite images. The achieved results were then compared 

and evaluated with echosounder bathymetric data over the study areas. 

2. Study areas and available data 
The study area is located in the resort of Newhaven south of Marsa Alam center - Red 

Sea Governorate on Halaib and Shalatin road, bounded on the south by the Fantasia 

resort and from the West land space then Halaib road and Shalatin and from the north 
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by land of space then Lambrada Gamma Resort (figure 1).Newhaven Resort has a sea 

front on the Red Sea with a coastline of 530 meters. 

The resort is characterized by a shallow area ranging from the length of the shoreline 

from 100 meters to 200 meters, with different benthic topography and different marine 

environments of marine grass and coral reefs, with the top of the reef crest (figure 2) 

and then the slope to deep water. 

 

Figure 1: The study area. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Section of reef crest. 
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2.1 Imagery data 

In this research the Sentinel 2 open data satellite missions, were used. The closest time 

scenes at July 2018 were selected. The data of this satellite missions can be obtained 

from USGS Earth Explorer and Copernicus Open Access Hub. 

 

2.2 Echosounder data 

The deviceBathy-500mf Multi Frequency- Survey-Echo Sounder was used on the boat 

to scan the longitudinal and transverse sectors of the deep area, which allows the 

passage of vessels without any hindrance, and the device is connected to the GPS device 

to determine the coordinates of each point in the sector surveyed with high accuracy. 

Laptop on the program of the marine hypack survey, which allows the scanner sector 

vision and tracking the current survey on the computer screen to ensure the direction 

and accuracy of scanned sectors, as well as storage and output data In order to perform 

the survey with the accuracy the device was set to record readings every five seconds on 

Godly compound identified previously were recorded nearly 5,500 points in the deep 

area. The shallow area extends to about 150 meters from the shore and is difficult to 

reach by boat. The depth of the water is from 0 to 60 centimeter and about 5 meters to 

the lagoon. This is done by manual scanning device and manual GPS. The coordinates 

and depth of each point is recorded direct until walking in shallow water and the total 

points in the shallow water are about 1500 points. 

 

 

Figure 3:  In-situ bathymetry. 
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3. Methodology 

In this study, the images were acquired from Sentinel 2 satellite according to Metadata 

documentation; all images do not need geometric corrections. They are already in the 

World Geodetic System (WGS84) datum and the Universal Transverse Mercator 

(UTM) projection system. The Sentinel 2 multispectral images of the studied area were 

corrected for bathymetric mapping through three successive steps [21]. First, we 

converted the digital numbers of image pixels to reflectance values. Second, the image 

corrected for atmospheric errors. Then, the image corrected from sun glint errors. The 

resulting image can be linked to water depths using field calibration points. The used 

methodology is described as follow:  

 

3.1 Imagery data pre-processing 

 

The reflectance of each pixel value can de calculated using the parameters in the 

metadata file depended on the following equation. 
 

ρλ = (Mp DN + Ap)/sin θSE                                                          Equation  1 
 

 Where, ρλ denotes reflectance of the top of atmosphere reflectance, DN represents the 

digital numbers recorded by the sensor, Mp is the band-specific multiplicative rescaling 

factor for reflectance, Ap is the band specific additive rescaling factor for reflectance, 

and θSE is the local sun elevation angle in degrees. The Mp, Ap, and θSE values were 

obtained from the metadata file of image (MTL file). 

 We corrected the reflectance values for atmospheric effects using dark pixel subtraction 

theory. In this method no atmospheric parameters are needed and it is based on the 

hypothesis that the pixel with the darkest value has no reflection and the remaining 

value of this pixel came from the atmospheric effect. As a result, the atmospheric 

correction calculated by subtracting all pixels from this pixel using the following 

equation 2:  
 

Rac = Ri – Rdp                                                                 Equation  2  
 

Where Rac represents the corrected pixel reflectance value, Ri is the initial pixel 

reflectance value (ρλ), and Rdp denotes the darkest pixel value.  

We corrected the reflectance values for sun glint errors using the relation between the 

near-infrared band and other bands [9] based on the following equation:  
 

Ri' = Ri * bi (RNIR – MinNIR)                                         Equation  3  
 

where Ri' denotes the de-glinted pixel reflectance value, Ri represents the initial pixel 

reflectance value, bi is the regression line slope resulting from the correlation between a 

sample of a visible band reflectance values and NIR band reflectance values over the 

glinting area, RNIR denotes the corresponding pixel value in NIR band, and MinNIR 

represents the minimum NIR value in the same sample of the glinting area. 

 

4. Proposed approaches for bathymetry estimation 
 

4.1 Neural network fitting algorithms (NN)  
Neural network (NN) have been used widely in remote sensing for classification and 

regression problems [23]. The multilayer perception model using the back propagation 

algorithm is a supervised approach used for displaying the non-linear relationship 
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between input and output data [30]. The multilayer perception consists of: the input 

layers as neurons that represent the available data, which in this case is the multispectral 

image band values; the hidden layer that demonstrates the network training process; and 

finally the output layer, which are the water depths. The back propagation algorithm 

begins with initial network weights to find the least error values by comparing actual 

outputs with desired values through an iterative process eventually reaching a 

predefined level of accuracy [29]. Also, the linear function from the hidden layer to 

node outputs [3]. The Levenberg–Marquard training algorithm is used to train the back 

propagation for weight and bias values updating as it is the first-choice supervised 

algorithm that is highly recommended for training middle-sized feed-forward neural 

networks [28]. The algorithm is given in Equation 4 [8]: 
 

 Xₖ₊₁ =Xₖ + [JTJ+ µI] - I JT ɛk                             Equation  4  
 

where Xₖ  = the vector of current weights and biases, ɛ = the vector matrix of the 

network errors, J=Jacobean matrix of the network errors, μ = a scalar indicating the 

calculation speed of the Jacobean matrix, k = iteration number, I = the unit matrix, and 

T = the transpose matrix. 

 

4.2 Support Vector Regression (SVR) [22] 

Vapnik et al. (1964) proposed support vector machines (SVMs) for solving 

classification problems and statistical learning applications. As the method has shown 

high performance and has resulted in high accuracies, it has been extended successfully 

to regression problems. The support vector regression finds the most possible flat and 

deviated insensitive loss of function ε from the real targets [37]. In other words, errors 

are allowed if it is less than the predefined ε that controls the tolerance; otherwise, they 

are not. Suppose that we have a linear problem with the following equation: 
 

F (x) = ¼ w*y + b                                         Equation  5 
 

where w ∍ y and b ∍ y, both w and y are the dot product of w and y, and b is the bias. 

Flatness in regression problems means searching for a small value for w, or in other 

words, minimizing the norm Euclidian space ‖w‖2. Thus, the regression can be stated as 

a convex optimisation problem as follows : 

Minimize ‖w‖2 

Subject to 

{
𝑡𝑖 − (𝑤. 𝑦) + 𝑏 ≤  ɛ
(𝑤. 𝑦) − 𝑡𝑖 + 𝑏 ≤ ɛ

                                               Equation 6 

 

However, this formula assumes that all points are approximated within the allowable 

precision ε, which is not a feasible assumption in all cases, and some exceeding errors 

need to be allowed. A soft margin loss function is used to present slack variables ζi to 

overcome this problem, and the support vector regression solves this problem as 

follows: Minimize 
 

 ‖w‖2 + C ∑ (𝜁𝑖 +  𝜁𝑖 ∗)𝑛
𝑖=1  

Subject to 
 

{

ti − (w. y) + b ≤  ζi
(w. y) − ti + b ≤ ζi ∗

ζi , ζiˣ

                                  Equation  7 



 

161 

 

Where C is the compromise between the flatness and the tolerated deviation larger than 

ε. The points outside ε are called support vectors. 

It was found that solving this optimization problem is easier in its dual formulation and 

by extending the SVM to nonlinear functions. As a result, a standard idealisation 

method using Lagrange multipliers can be applied to solve the SVR optimization 

problem. A Lagrange function can be obtained from the objective function by defining a 

dual set of variables. The dual optimisation problem written as [9]: 

   Maximize 
 

-½ ∑ ( 𝛼𝑖 −  𝛼𝑗ˣ)(𝛼𝑗 −  𝛼𝑗ˣ)(𝑦𝑖 − 𝑦𝑗)𝑖
𝑖,𝑗=1  

-ɛ ∑ (𝛼𝑖 −  𝛼𝑙ˣ)𝑙
𝑖=1  + ∑ 𝑥𝑖 (𝛼𝑖 −  𝛼𝑙ˣ)𝑙

𝑖=1  
 

Subject to 
 

∑ (αi −  αlˣ) = 0l
i=1  

 ( αi , αiˣ) ∊ [ 0 , C ]                                                Equation  8 
 

where αi and αiˣ are Lagrange multipliers. 

   As a result, w and the expansion of F(x) can be calculated as follows: 

 

W =  ∑ (𝛼𝑖 −  𝛼𝑙ˣ)𝑥𝑖 𝑎𝑛𝑑 𝐹(𝑥)𝑛
𝑖=1  

     =  ∑ ( 𝛼𝑖 −  𝛼𝑗ˣ)(𝑦𝑖 − 𝑦𝑗) + 𝑏𝑙
𝑖,𝑗=1 (9) 

 

The equations conclude that w can be calculated from a linear combination of the 

training sets of yi. 

The bias term b is calculated using the Karush Kuhn Tucker (KKT) conditions [12] as 

follows: 
 

b = xi – (w,y) - ɛ for αἰ (0,C)                                Equation  10 
 

The non-linearity of the support vector algorithm can be performed by pre-processing 

the training sets yiwith a map Ф: y → into some feature space.  
 

For a practical solution, k kernel (y, y ') can be used, and the support vector regression 

algorithm can be rewritten as follows [9]: 

     Maximize 
 

 -½ ∑ ( 𝛼𝑖 −  𝛼𝑗ˣ)(𝛼𝑗 −  𝛼𝑗ˣ) 𝑘 (𝑦𝑖 − 𝑦𝑗)𝑖
𝑖,𝑗=1  

 -ɛ ∑ (𝛼𝑖 + 𝛼𝑙ˣ)𝑙
𝑖=1  + ∑ 𝑥𝑖 (𝛼𝑖 −  𝛼𝑙ˣ)𝑙

𝑖=1   

 

Subject to 

 ∑ (𝛼𝑖 −  𝛼𝑙ˣ) = 0𝑙
𝑖=1  

 ( αi , αiˣ) ∊[ 0 , C ]                                             Equation  11                                               

 

Also, w and the expression of F(x) can be rewritten as : 
 

W =  ∑ (𝛼𝑖 −  𝛼𝑙ˣ) ɸ𝑥𝑖 𝑎𝑛𝑑 𝐹(𝑥)𝑛
𝑖=1  

     =  ∑ ( 𝛼𝑖 −  𝛼𝑗ˣ)𝑘(𝑦𝑖, 𝑦𝑗) + 𝑏𝑙
𝑖=1                     Equation 12 

 

Next, we need the k kernel function (y, y ') that corresponds to a point product in some 

feature space. In other words, one converts the nonlinear input space into a high 
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dimensional feature space. There are several kernels that can be used to perform this 

transformation, such as Pearson universal kernel which proposed by [36], who argued 

its force, the leading time-saving power leading to better circulating performance than 

SVRs. The global Pearson kernel can be written as follows: 
 

K(yi,yj) =  
1

1+   

2∗ √‖𝑦𝑖−𝑦𝑗‖2√2(
1

𝑤 )

𝜎

                                        Equation 13  

 

Where σ and ω are kernel parameters which control the half width and the tailing factor 

of the peak. 

[26] used the sequential minimum optimisation (SMO) algorithm for solving the 

optimisation problem in SVR and debated its precedence to other optimisation 

solutions. The SMO is an iterative algorithm solving the optimisation problem 

analytically by breaking the optimisation problem into smaller problems. The 

constraints for the Lagrange multipliers are reduced as follows: 

 

0  C and yi αi + yj αıⁿ  = k  
 

The algorithm starts by finding the Lagrange parameter αi that violates the KKT 

conditions [12] then chooses the second Lagrange parameter αi, optimizes both, and 

repeats these steps until convergence. When all Lagrange complications meet the 

conditions within the previously allowed tolerance, the problem is solved. 

 

4.3 Bagging fitting ensemble (BAG) [21] 

Breiman suggested Bag as an ensemble learning algorithm to improve prediction model 

performance, regression, and classification accuracy. His goal was to overcome 

overfitting problems and reduce algorithm variance. The objective of bagging theory is 

to make independent samples with replacements from the training set, and then generate 

a fitting model to each bootstrap sample. Finally, all generated models are aggregated 

by averaging in regression problems [35]. This process can be useful for improving the 

results of unstable algorithms as regression trees and NNs. The results are always more 

favourable than when using a single model [10]. The Gini diversity index can be used to 

split each node to assign a criterion for impurity. Splitting is finished when the Gini 

index reaches zero and the results are pure split nodes [25]. 

 

5. RESULTS 

Figure 4 summarises the processing steps for estimating bathymetric information from 

Sentinel 2 satellite imagery. The first two steps involve converting the DNs to 

reflectance values and correcting both atmospheric and sun glint errors. These steps are 

performed in an ENVI environment. The proposed approaches for estimating 

bathymetry and all the statistical analysis are conducted in a MATLAB environment. 

For all proposed approaches corrected blue/red, green/red green and red bands 

logarithms were used as the input layer and water depths as the output layer. The data 

set was divided into random samples with 75% for training and 25% for testing.  
The NN has been trained using Levenberg-Marquardt back-propagation training 

function with. The log sigmoid function was used with the hidden layer, 10 neurons 

were selected after many trials to get the optimum number of neurons, and the linear 

function with the output layer. 
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The SVR was applied with SMO for solving the optimisation problem and the PUK 

kernel function. The SVR code was originally developed [4]. 

 The BAG model was constructed with ensembles of 30 regression trees .All of these 

parameters for each algorithm were selected based on the minimum RMSE and highest 

R² values. 

Figures 5, 6, and 7 show the evaluation of each model, and Table 1 summarize the 

corresponding RMSE and R² values. 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4: The workflow of the bathymetry detection steps of the study area. 
 

 
Figure 5: The continuous fitted model using NN 
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Figure 6 :The continuous fitted model using SVR 
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Figure 7: The continuous fitted model using BAG 
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Table 1: The RMSEs and R² of all methods for bathymetry detection 
 

Methodology NN SVR BAG 

RMSE (m) 1.3430 2.0474 0.65564 

R² 0.96 0.91 0.99 

 

4. DISCUSSION 

For bathymetry the selected bands was performed through a statistical analysis to 

investigate the correlation between water depth and the imagery bands. The red and 

green bands showed a strong relationship with the depth of the water [5,34], and as the 

same blue/red and green/red logarithms band ratios showed a strong relationship with 

the depth of the water. Finding the best combination of the selected bands is performed 

through a trial process based on the lowest value of RMSE and the highest value of R². 

At this study, the best combination occurred between the blue/red, green/red, green and 

red bands logarithms. 

The NN performs the correlation between the multilayer of the imagery bands as input 

and water depth as output through multidimensional non-linear functions. Many 

researchers have confirmed the outperformance of NN compared to various empirical 

methods as it finds the highest correlation between the imagery data and the in situ 

water depth [7]. The main disadvantage of NN is the many experiments needed to find 

the best weights for the relationship as it is an unstable method that has significant 

differences in RMSE and R² from one experiment to another. 

The SVR algorithm is as table approach that uses minimum sequential optimisation to 

correlate the imagery bands with water depth. The optimum kernel function was used, 

after many trials, from the radial basis function kernel, the polynomial kernel, and the 

Pearson universal kernel depended on minimum RMSE and maximum R2. The latter 

overtook other kernel functions with the highest R2 and lowest RMSE. Also, the   

optimum SVR parameters were selected based on the minimum RMSE criterion. 

The BAG ensemble averages regression trees built from a bootstrapped random 

selection from input data. The optimum number of regression trees was selected after 

sequential trials of various numbers of trees, and the best values were achieved with 30 

trees. The algorithms use the Gini diversity index for the splitting trees that are not 

pruned. The randomness of the regression trees and the splitting of the data into training 

and testing sets argue that the ensemble was not over fitting the input data. 

BAG algorithm shows higher accuracies and more stability than do SVR and NN over 

the study area. 
 

7. CONCLUSION 
In this study three approaches were used for bathymetry detection. The proposed 

approaches used blue/red, and green/red, green and red bands logarithms corrected from 

atmospheric and sunglint systematic bands of Sentinel 2 satellite images as input data 

and water depth as output. To validate the proposed approaches, the approaches were 

compared with each other. All results were also compared with echosounder water 

depth data. 

The proposed approaches NN, SVR and BAG, produced RMSE values of 1.3430, 

2.0474 and 0.65564 m and R² values of 0.96, 0.91, 0.99 respectively. 

  It can be concluded that BAG approach achieved more accurate results than NN and 

SVR for bathymetry detection over the study area using Sentinel 2 satellite images. 
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