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ABSTRACT
The elasto-plastic analysis of plate structures is of considerable interest in various areas
of structural applications. Plastic collapse analysis of a structure can be carried out by
the well known bound theories which indicate that exact solutions for plates are not
always possible. In general, the calculated collapse load lies between the two limits
depending on the approach adopted. Upper bound solution for collapse load can be
obtained from yield line analysis of plates. Any elastic solution of the plates can be
considered as a lower bound solution for the plastic collapse load. Nonlinear finite
element method of analysis provides the structural engineer with capabilities to analyze
very complex problems of engineering in much more realistic manner including
geometry and support conditions that come closer to the reality. A software program
called EPALPE (Elasto-Plastic Analysis for Layered Plate Element) is prepared by the
author using Fortran 77. The software is used for elasto-plastic and geometrically
nonlinear analysis of thin and thick plate structures using the Heterosis plate bending
element based on Reissner-Mindlin plate theory. The formulation utilizes discrete
layered approach and incremental-iterative algorithm to solve the system of nonlinear
equations. The numerical results from the program EPALPE have been compared with
the lower and upper bound solutions from analytical solutions. The numerical results for
some bench mark applications demonstrate the acceptable accuracy and efficiency for
the computational model which is implemented in the prepared computer program.
Keywords: Elasto-Plastic Analysis, NonLinear Finite Element Method, Reissner-
Mindlin Plate Theory, Layered Approach, Lower and Upper Bound, Elasticity
Theory, Yield Line Theory.

INTRODUCTION

The analysis of elasto-plastic bending problems of the plates has been performed by
many researchers [1], [2], [3], [4]. The upper and lower bounds ultimate capacities of
the plate can be carried out by the theorems of limit analysis. The upper bound theorem
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(unsafe theorem) states that if a load is found which corresponds to any assumed
collapse mechanism, then the load must be equal to or greater than the true collapse
load. Yield line analysis of plates is simply application of the upper bound theorem to a
plate collapse mechanism [5]. The lower bound theorem (safe theorem) states that if for
any load a stress distribution can be found which both satisfies all equilibrium
conditions and nowhere violates yield conditions, then the load cannot cause collapse .
Any elastic solution is a lower bound for the plastic collapse load [6]. Once an upper
bound for collapse is obtained through the yield line theory, the exact collapse load can
be bracketed if a lower bound solution is known. The non linear finite element method
is now firmly accepted as a most powerful general technique for the numerical solution
of a variety of problems encountered in engineering [3], [4], [7], [8], [9], [10]. In this
work, the computational model involves many considerations including providing a
layered plate bending element based on Reissner-Mindlin plate theory [11]. The 9 node
Heterosis element which was developed by Hughes et al. [3], [9] is introduced, elasto-
plastic material responseand geometrically nonlinear is considered in this model. In the
layered model, a plate is divided into layers of different thickness where stresses are
calculated and the yield condition is checked for each layer separately. The forces and
moments are then calculated by integration through the thickness. To implement the
elasto-plastic material behavior three requirements have to be met a) The elastic
constitutive relation must be formulated to describe material behavior under elastic
condition b) A vyield criterion indicating the stress level at which plastic flow
commences must be postulated c¢) A relationship between stress and strain must be
developed for post yield behavior i.e. when the deformation is made up of both elastic
and plastic components. There are different numerical procedures that can be
incorporated in the solution of nonlinear problems. A successful procedure must include
incremental / iterative method to solve the governing equation and convergence criteria
or termination schemes to end the solution process with the acceptable accuracy [8], [9].

OBJECTIVES OF PRESENT STUDY
The objectives of this paper can be summarized as follows:

1- To prepare and develop a computer program EPALPE for the elasto-plastic and
geometrically nonlinear analysis of plate in bending .

2- To review and examine the computational model for elasto-plastic analysis of
Heterosis layered plate bending element based on Reissner-Mindlin plate
theory.

3- To compare the numerical results from EPALPE for some bench mark problems
with the analytical results from yield line and elasticity theories of plates which
are considered as upper and lower bounds solution.

THE COMPUTATIONAL MODEL

The computational model includes the following:-

1) The plate bending element based on Reissner-Mindlin plate theory as per the
following assumptions :-
a) Displacements are small compared with the plate thickness.
b) The stress normal to the mid-surface of the plate is negligible.
c) The normal to the mid-surface before deformation remains straight but
not necessarily normal to the mid-surface after deformation as shown in
Fig.1.
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2) The quadratic 9 node Heterosis element used in this work
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The 9 node Heterosis quadrilateral element exhibits improved characteristics in
comparison with 8 node Serendipity and 9 node Lagrangian [8], [9] to analyze thick or
The Heterosis element is formulated using 9 node Lagrangian shape
functions for rotations (6x , 6y) and 8 node Serendipity shape functions for lateral
(W) as shown in Fig. 2. It was assumed that the geometry and
displacement varyyouadraticallv over the element bv the followina shape function.

Fig.2 Natural Coordinate Nine Node Heterosis Element

For corner nodes :

NiG. =7 (1+E&) () E&+nni-l)  i=1357

(1-3)
For mid-side points :

NiE, =2 (1+£8) (112 +2 (+nn) (1-€9)

(1-b)
For central node :
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Ni€,m=(1-¢% (1-n?)
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3) The layered approach
In the discrete layered approach the plate is divided into a series of layers of different
thickness and material. Each layer contains stress points on its mid-surface. The stress
components of the layer computed at these stress points are assumed to be constant over
the thickness of each layer, so that the actual stress distribution over the plate thickness
is modeled by a piecewise constant approximation as seen in Fig.(3).

Layers Stress diagram
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Fig.( 3) Layered Subdivision of Plate and the Corresponding Stress

I |
I |
I |
I |
t +
-h/2 -1.0

In the present work the strain matrix |B| is calculated at mid-surface of each layer, the
element stiffness matrix |K| and the internal force vector { P }are thus defined as
follows:

K=[ BTDBav
v

P=J B"odV
4) The constitutive relation for elasto-plastic plates has three steps
a) The elastic constitutive relation based on the generalized Hooke's law.
b) The yield criterion indicating the stress level at which plastic flow
commences based on the generalized Huber-Mises law.
c) The relation between the incremental stress and incremental strain after
the onset of initial yielding.
The incremental stress — strain relationships for a plate layer may be expressed by
{Ac}5a=[D]lsxs{Ac€ }sa 2)
Taking into consideration the assumption of zero stress in the direction perpendicular to
the plate mid surface 63 =0

[ D ]sxs is the elasticity matrix which is calculated for the material axes

Ey Evq2
(401 (1=v12v21)  (1-V12021) 0 0 0 I
Ao, EaV12 E, 0 0 0 de,
ATIZ — |(Q-v12v21) (A1-v12V21) AY12 (3)
Eo A TR
AT23 O O O k1G13 O Ay23
0 0 0 0  kiGys
Where

The subscript 1, 2 and 3 refer to the directions of the three principal axes of anisotropy
The o,s and t,s are stress components
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The €,s and v,s are strain components

E is the Young,s modulus

v is the Poisson,s ratio

k1, k2 are shear correction factors in the 13 and 23 planes

The yield criterion can be expressed for an anisotropic material in a similar manner for
isotropic material
6 = [042(61-02)2 + 023(02-63)2 + 013 (G3-G1 )2 + 3044 T12 + 30i55 T13 + 3atgs 23] > (4)
Where ¢ is effective stress and o's are parameters of anisotropy
By using the assumption o3 =0
g =a, 0'% + 2412 61062 +a G% +a3T12 tag T13 + a5To3 (5)
Where ay, a12, a2, a3, a4 and as are anisotropic parameters which can be determined
experimentally.

5) Geometry Nonlinear
Total lagrangian formulation is adopted in which large deflection and moderate
rotations (in the sense of the Von Karman hypotheses ) are accounted for
Strain-Displacement matrix B is separated into the usual part B and nonlinear
contribution part BL. So that

B=B+BL (6)
Consequently, geometric stiffness matrix Ko may be defined as

Ko =da fv dBT o dV (7
Then, use of (2) and (12)

K=K+ Ko (8)

Where K is the total stiffness matrix

6) Incremental/iterative solution
In nonlinear analysis, the basic set of equilibrium equations to be solved at a certain
load increment n is as following:

Lpin:fin-pin:f”_fv BT al'dV #0 9)
Where W is the residual forces at iteration i, fn is the external applied loads and P is
the internal equivalent forces at iteration i.

An iteration sequence must be performed for each load increment n in order to obtain a
displacement field, a}* which provides a stress field ¢;* in  such that the residuals
W vanish. In particular, the displacements are updated at each iteration according to

a"=al  + Aal (10)
Where Aaj denotes the displacement change occurring during the iteration.

Aal = [P, ] WP, (11)
In which

[K™,]71 is the tangential stiffness matrix of the structure evaluated at the beginning of
the i iteration

In an incremental iterative solution strategy, the solution obtained at the end of each
iteration is checked to see whether it has converged within preset tolerance or whether it
is diverging.

The iteration displacements Aa; at iteration i are used to monitor convergence of
nonlinear solution. for convergence the norm of the incremental displacements is
required to be less than a specified percentage of the norm of the total displacements

(ai).
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NUMERICAL APPLICATIONS

In order to compare the numerical results obtained by the program EPALPE with
analytical results from yield line and elasticity theories of plates to confirm the validity,
convergency, accuracy and efficiency, numerical solutions for three specific problems
with a variety of end condition (simply supported SSSS, clamped edge CCCC and two
opposite edges clamped and the others simply supported SCSC) are presented. All three
problems involve isotropic square plates subjected to lateral loads that are uniformly
distributed throughout the plate. Square plate will be analyzed and by taking advantage
of symmetry a 3x3 mesh of Heterosis elements is adopted in a symmetric quarter as
shown in Figs.4, 5 and 6.

Physical and geometrical parameters for these plates are as following:-

Youngs' modulus (E) = 30000 N/mm?

Shear modulus (G) = 11540 N/mm?

Yield strength of plate material (cy) = 30 N/ mm?

Poissons' ratio (v) = 0.3

Plate thickness (t) = 0.2 m

Square plate side length (L) =6 m

Et3

The flexural rigidity of the plate (D) = 209

2
The fully plastic moment (M) = o, =

2
Table 1 shows the numerical factor CI‘W—L from analytical analysis using elasticity and
P

yield line theories as given in references [3], [4], [7] for square plates subjected to
uniform load (q) and of different boundary conditions.

2
Table 1: Numerical Factor ‘ZW—L From Analytical Analysis of Square Plates Subjected to
P
Uniform Load Using Elasticity and Yield Line Theories

Boundary condition CCCC SSSS SCSC

Yield line theory 48.00 24.00 36.00

Elasticity Theory 43.30 20.88 30.12
pyoo Y

7 P—e - b )9 W=0 Fig. (4) A Quarter of Clamped Square
! 20 no_n . . . .
£l 19 ) 2% 6,=0 Plate Discretized _mto mesh 3x3 using
aln ~ el 0,=0 Heterosis element
IV 17e—e * 2L
3 Fo1D
8 1) 9% @ |
L N/
— . A
2 3 &5 6/
3m
Uy:U

314



Fig. (5) A Quarter of Simply
Supported Square Plate
Discretized into mesh 3x3 using
Heterosis element
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RESULTS AND DISCUSSION
Figs. 7, 8 and 9 show the load-deflection curve for a square plate subjected to uniform
load with different types of end conditions. Where w is the central plate deflection.

Simply Supported Square Plate Subject to Uniform Load
30
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Fig. (7) Load-Deflection Curve for Simply Supported Square Plate Subjected to Uniform Load
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Fig. (8) Load-Deflection Curve for Clamped Square Plate Subjected to Uniform Load
Square Plate with Two Opposite Edges Clamped and the Other One Simply Supported
Subject to Uniform Load
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Fig.(9) Load-Deflection Curve for Square Plate with Two Opposite Edges Clamped and Other

Ones Simply Supported Subjected to Uniform Load

CONCLUSIONS

The main conclusions of the work described in this paper are summarized as follows:

1- By utilizing the present computational model which is implemented in the
computer program EPALPE the elasto-plastic problems for the plates can be
treated with reasonable accuracy.

2- The applications were solved for isotropic plate as special case from the
anisotropic plate gave good accuracy.
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RECOMMENDATIONS AND FUTURE WORK

Listed below are the recommendations for future work based on the work done in this

1-

2-

3-

paper:

The composite plates can be analyzed by utilizing the elasto-plastic analysis for
anisotropic plates with layered approach.

The computational model can be developed to analyze the reinforced concrete
slabs taking into consideration the real material behavior and the nonlinearities
in material and geometry.

The program EPALPE can be developed to analyze reinforced concrete slab
including the real material behavior of concrete and steel reinforcement.
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